Забыли данные входа?   Регистрация  

1. Сырье и получение полистирола

Стирол представляет собой бесцветную жидкость—мономер, содержащий альдегиды и кетоны, образующиеся из стирола на воздухе, имеет едкий резкий запах. Температура кипения стирола + 145°С, температура замерзания —31°С, критическая температура + 373°С. Скрытая теплота испарения 365 Дж/г, вязкость 0,78 Па с, плотность 906 кг/м3, молекулярная масса 104. Смесь воздуха со стиролом при содержании последнего 1,1—6,1% (по объему) взрывается. Стирол легко смешивается в любых соотношениях с большинством органических растворителей (неполярных и слабо-полярных): низшими спиртами, алифатическими, ароматическими хлорированными углеводородами, нитропарафинами, сероуглеродом и т. д. Растворимость стирола в высших спиртах, кетонах и эфирах ограничена, в воде он почти нерастворим (0,03%), вода в стироле также растворяется плохо (0,07%).



Стирол является хорошим растворителем органических перекисей, хниола п третичного бутипирокатехина, причем последний наряду с гидрохиноном применяется в качестве наиболее активного ингибитора (оказывает действие при введении 0,0001% от массы стирола) для предотвращения полимеризации при транспортировке и хранении стирола. Стирол обладает наркотическим действием— длительное вдыхание паров вызывает расстройство нервной системы, катары дыхательных путей, изменение состава крови и печени, раздражение кожи. При концентрации паров до 2 мг/л и кратковременном действии их на организм наблюдается легкое раздражение слизистых оболочек. Жидкий стирол вызывает образование трещин на коже.


Основным методом промышленного производства стирола является каталитическое дегидрирование этилбензола, который получают в результате алкилирования бензола этиленом в присутствии Катализатора (хлористого алюминия или фосфорной кислоты). 

Применяют также метод получения этилбензола, состоящий в непосредственном выделении его из смеси ксилолов. Эту смесь, содержащую 15—18%) этилбензола, выделяют из легкой фракции пиролиза нефти. Для четкого разделения компонентов смеси, температуры кипения которых очень близки (отличаются только на 4°С), необходимо применение высоких и эффективных ректификационных колонн.

Обычно в качестве катализаторов реакции применяют окислы металлов (железа, магния, цинка, меди и др.), и процесс протекает в присутствии водяного пара, понижающего парциальное давление реагентов примерно до 0,01 МПа. В результате уменьшения давления равновесие обратимой реакции дегидрирования сдвигается в сторону образования стирола, поскольку она сопровождается увеличением объема реакционной смеси.

Кроме снижения давления смешение пара с этилбензолом непосредственно перед подачей в контактный аппарат приводит к уменьшению побочных реакций, перегретый пар обеспечивает нагревание, необходимое для реакции дегидрирования. Кроме этого, благодаря непрерывной реакции водяного пара с коксом, осажденным на катализаторе, устраняется необходимость в периодической регенерации последнего и тем самым обеспечивается непрерывность процесса дегидрирования в течение длительного срока.

Реакция дегидрирования этилбензола осуществляется в контактном аппарате 4 шахтного типа -без топки, изготовленном из углеродистой стали; снаружи он покрыт теплоизоляционным материалом, а внутри футерован огнеупорным кирпичом. Иногда используют трубчатые контактные аппараты с топками. Воздух из воздуходувки подается для нагревания в печь, которая служит для перегрева (до 710°С) водяного пара, поступающего из теплообменника с температурой 385°С. Обогрев печи производится газообразным топливом. Причем отходящими газами нагревается подаваемый в печь воздух, а также этилбензол в испарителе. Пары этилбензола перед поступлением в контактный аппарат нагреваются в теплообменнике до температуры 520°С. Смешение паров этилбензола и воды, подаваемых из теплообменников, происходит при поступлении в контактный аппарат через вход, расположенный в нижней части реактора. Смесь паров, поднимаясь вверх, проходит в контактной зоне через решетку из хромоникелевой стали, на которой находится катализатор. Выходящие из аппарата продукты реакции, имеющие температуру 565°С, охлаждаются при последовательном прохождении теплообменников и одновременно нагревая пары этилбензола и перегревая водяные лары. Затем контактные газы направляются в холодильник смешения для охлаждения до температуры 105°С, при этом происходит конденсация смолообразных веществ — побочных продуктов реакции дегидрирования этилбензола. Выходящая из холодильника смесь сжижается в конденсаторе. Полученный конденсат сначала в сепараторе освобождается от газов (водорода, метана, этана, двуокиси и окиси углерода), а затем в разделителе отстаивается, и в результате чего происходит разделение на смолообразные вещества, воду и углеводороды. Последние с содержанием около 40% стирола через сборник поступают на ректификацию, а вода из разделителя направляется на орошение холодильника смешения.

Очистка сырого дегидрогенизата является самым сложным процессом в производстве стирола, так как температура кипения (136°С) этилбензола (его в сырце около 60%) близка к температуре кипения стирола; кроме того, при повышенной температуре происходит быстрая полимеризация стирола, поэтому ректификацию стирола производят перегонкой в вакууме при пониженной температуре в колонне специальной конструкции с добавлением ингибитора — гидрохинона.

Полистирол в промышленности получают главным образом свободно-радикальной полимеризацией стирола, используя вес известные методы: блочный, эмульсионный, суспензионный и в растворителях, Наибольшее распространение получили методы блочной и эмульсионной полимеризации.

Блочный метод полимеризации стирола. Процесс полимеризации стирола в массе (блочный метод) ведется как периодическими, так и непрерывными способами, обычно в две стадии: сначала получают сиропообразный раствор полимера в стироле, содержащий 30—35% полистирола; затем образуется готовый полимер, в котором присутствует 0,5—1% стирола,

Начальная стадия протекает большими массами при энергичном перемешивании и интенсивном отводе тепла, что возможно при низкой вязкости реакционной смеси; на конечной стадии образовавшийся форполимер переводится в формы небольшой емкости, в которых в большей степени возможны контроль и регулировка процесса полимеризации.

По одному из периодических методов блочной полимеризации предварительная стадия осуществляется в реакторе емкостью 2м3, изготовленном из нержавеющей стали и снабженном водяной рубашкой и обратным холодильником. Для сокращения индукционного периода процесса полимеризации стирол нагревают подачей пара в рубашку реактора, а затем создают вакуум до 26 кПа. При таком разрежении стирол кипит при 100— 110°С, и экзотермическая реакция протекает при этой температуре, причем часть выделяемого тепла расходуется на испарение мономера, а избыток отводится из реактора с помощью холодной воды, подаваемой в рубашку взамен пара с момента кипения стирола. Процесс предварительной полимеризации продолжается около 4 ч, после чего вязкий форполимер, охлажденный до 70°С, переливают в формы емкостью 20 л, изготовленные из чистого олова или луженой жести. Окончательная полимеризация в формах идет по ступенчатому температурному режиму при 100—115°С и, наконец, при 125—140°С. По окончании процесса формы охлаждают и вскрывают. Полученный брусок полистирола дробят в гранулы, которые промывают спиртом и сушат при разрежении.

По другому периодическому способу блочная полимеризация стирола проводится сначала в реакторе из нержавеющей стали емкостью 10 м3 при температуре 80—90°С в присутствии инициаторов. Затем полученный форполимер подают в другой реактор, по конструкции подобный фильтр-прессу и состоящий из алюминиевых рам и нагревательных плит, расположенных между ними. Плиты имеют отверстия для последовательного заполнения всех рам реакционной смесью. Благодаря шлифованным поверхностям плит и рам, а также наличию гидравлического пресса в реакторе создаются герметичные пространства, заполняемые форполимером. Плиты нагреваются горячей водой или паром и охлаждаются холодной водой. Реакция протекает в соответствии с описанным выше ступенчатым режимом, и по окончании полимеризации реактор охлаждают до 40°С. Образовавшиеся блоки полистирола (массой около 80 кг) измельчают в специальных дробилках.

Недостатки, присущие периодическому способу полимеризации стирола в массе, связаны с плохой теплопроводностью и повышенной вязкостью образующегося блока, а также с наличием в блоке трудноудалимого непрореагировавшего мономера. В связи с экзотермичностью процесса полимеризации стирола внутри блока создаются местные перегревы, приводящие к получению в этих зонах полистирола пониженной молекулярной массы, что увеличивает полидисперсность полимера. При высокой температуре внутри блока происходит деструкция полимера, в результате чего кроме снижения молекулярной массы увеличивается содержание остаточного мономера. Значительное количество последнего заметно ухудшает свойства полистирола, снижая температуру размягчения и устойчивость к старению (особенно при действии солнечного света). 

Наличие большого количества непрореагировавшего мономера вызывает помутнение и растрескивание полимера (в результате миграции стирола на поверхность) и его постепенное улетучивание.

Наиболее широкое применение в технике имеет непрерывный метод блочной полимеризации стирола, обеспечивающий получение полимера с высокой молекулярной массой и почти свободного от остаточного мономера. Непрерывная полимеризация осуществляется в башне (башенный способ), построенной но принципу «идеального вытеснения». Действие этого аппарата состоит в непрерывном поступлении исходных веществ, которые перемещаются сверху вниз и в результате взаимодействия образуют полимер. Последний непрерывно вытесняется из башни реакционной смесью, поступающей в ее верхнюю часть. Время нахождения форполимера в башне должно обеспечивать необходимую полноту конверсии мономера. Установка состоит из двух алюминиевых реакторов и башни (колонны), изготовленной из хромоникелевой стали. В реакторах проводится предварительная полимеризация стирола до конверсии около 35%. 

Реакторы имеют емкость 2 м3 каждый и снабжены лопастными мешалками, а также рубашками и змеевиками, по которым циркулирует вода, горячая в течение индукционного периода и холодная после начала процесса полимеризации. В результате умеренного охлаждения в реакторах устанавливается и поддерживается постоянная температура в пределах 75—85°С.

Смесь мономера и полимера находится в реакторах приблизительно в течение 60 ч при непрерывной подаче азота, для предотвращения окисления стирола и полистирола кислородом воздуха. Из реакторов полученный форполимер постепенно поступает в башню для окончательной полимеризации. Башня высотой 7 м состоит из шести царг (секции) диаметром 0,65 м, причем верхняя имеет только обогревательную рубашку, а остальные снабжены и змеевиками. Обогрев царг осуществляется высококипящим органическим теплоносителем — эвтектической смесью дифенила и дифенилоксида(73,5%). Тепловой режим устанавливают для каждой царги таким образом, чтобы полимеризация закончилась по истечении 25—30 ч пребывания реакционной смеси в колонне. Чем быстрее нарастает температура в секциях башни при постоянной температуре 100— 110°С в первой царге, тем быстрее происходит процесс полимеризации и, следовательно, тем выше производительность башни. Однако при этом снижается качество получаемого полимера и его молекулярная масса. Полимеризация протекает в атмосфере азота при постоянном уровне форполимера в башне, причем пары стирола, выходящие из колонны, улавливаются холодильником.

Расплавленный полистирол, практически не содержащий мономера (менее 1%), из нижней царги при температуре от 180 до 235°С (в зависимости от принятого режима) непрерывно поступает в конусообразную часть башни, соединенную со шнеком. Последний выдавливает готовый полимер в воздушный холодильник (или в ванну с водой), откуда он поступает в дробилку.


reklama

Реклама