Забыли данные входа?   Регистрация  

Антимикробные добавки в полимеры

В последние годы в Западной Европе и Америке наблюдается значительный рост использования различных бактерицидных и фунгицидных добавок в полимеры, особенно в медицине и в секторе производства товаров, контактирующих с пищевыми продуктами. Это связано с результатами недавних исследований, показавших, что в пробах, взятых с телефонных трубок, ручек и подлокотников сидений в больницах и прилавков супермаркетов и кафе содержится большое количество потенциально опасных для человека бактерий.

 

Помимо регулярного мытья рук и дезинфекции существует и другой способ существенно снизить количество бактерий в общественных местах – использовать пластики с бактерицидными и фунгицидными добавками.

В основном бактерицидные добавки применяются при изготовлении бинтов и пластырей, перчаток, катетеров, постельного белья и одежды в медицине, ковровых покрытий, обивки мебели, мешков для мусора, корпусов телефонов и ручек, а также оборудование ванных и туалетных комнат в общественных местах.

Основной задачей антимикробных добавок является снижение количества микробов в массе изделия и на его поверхности. Очень часто рост микроорганизмов бывает незаметен (без видимых пятен или изменения цвета), но приводит к появлению запаха и увеличивает риск переноса инфекции. Предотвращение появления запаха особенно актуально в таких изделиях, как одежда и мешки для пищевых отходов.

В некоторых случаях важно лишь предотвратить обрастание пластиковых изделий грибками и водорослями, которые выглядят очень не эстетично, особенно в пластиковых бассейнах и на пляжных сооружениях и бакенах.

К настоящему времени разработаны антимикробные добавки для широкого спектра полимеров – полиолефинов, полистирола и его сополимеров, полиамида и смесей ПК/АБС.

По механизму действия антимикробные добавки можно разделить на 2 группы – микробиостатические и микробиоцидные.

  • Микробиостатические добавки замедляют процесс размножения микроорганизмов, но клетки не погибают, а только замедляется их рост. В зависимости от предназначения такие добавки подразделяются на бактериостатические или фунгистатические.
  • Микробиоцидные добавки уничтожают микроорганизмы полностью, значительно снижая их количество сразу же после контакта. В зависимости от предназначения такие добавки подразделяются на бактерицидные или фунгицидные.

Активность антимикробных соединений зависит от следующих параметров: концентрация активного компонента, pH, температура, типа полимера, метода ввода (с пластификатором или в расплаве) и времени их контакта с полимером. Так же следует учитывать такой немаловажный фактор, как чувствительность микроорганизмов. В большинстве случаев грамотрицательные бактерии менее чувствительны к антимикробным добавкам, чем грамположительные, так как обладают дополнительной мембраной, которая замедляет проникновение антимикробной добавки.

Взаимодействие микроорганизмов с пластиками может происходить тремя различными путями:

  1. прямое разрушение, когда микроорганизмы используют пластик (или его компоненты – пластификаторы, добавки) в качестве питательной среды.
  2. разрушение или изменение внешнего вида изделия под действием продуктов метаболизма микроорганизмов (кислоты, энзимы, пигменты и т.п.)
  3. образование колоний микроорганизмов на поверхности изделия, не наносящее видимого вреда изделию.

В большинстве случаев пластики повреждаются грибками, но и бактерии также вносят свой вклад, в основном питаясь различными органическими добавками, содержащимися в изделиях.

Более всего воздействию микроорганизмов подвержены пластифицированный ПВХ, так как бактерии используют пластификатор в качестве источника питания и вспененные полиуретаны, из-за большого количества пор в которых накапливается пыль, влага и споры грибков.

Полиолефины в целом менее подвержены действию микроорганизмов, по сравнению с ПВХ и полиуретанами. Наиболее склонен к биоразложению низкомолекулярный полиэтилен (молекулярная масса менее 10000) и полимеры с небольшим количеством разветвлений (ПЭВП, ЛПЭНП). Также воздействию микроорганизмов подвержены пластики, полученные из капролактама.

Но, тем не менее, в результате исследований различных синтетических волокон и тканей было выяснено, что на поверхности полиэфирных, полипропиленовых и полиамидных волокон прекрасно развиваются стрептококки.

Взаимодействие микроорганизмов с полимерами может проявляться следующим образом:

· Появление пятен или изменение цвета происходит в результате действия внутриклеточных пигментов (в основном плесени – пенициллин и аспергилла) или внеклеточными красителями (продукты метаболизма бактерий).

· Изменение электрических свойств (проводимости) и ухудшение изоляционных свойств происходит в основном из-за колоний микроорганизмов на поверхности изделия, которые не повреждают сам материал, но выделяют в процессе жизнедеятельности полисахариды.

· Изменение механических свойств в результате поедания бактериями функциональных добавок – пластификаторов и стабилизаторов. Это наиболее серьёзное проявление биоразложения пластиков.

· Загрязнение поверхности вследствие образования колоний микроорганизмов, которые создают микрошероховатости, на которых задерживается пыль.

· Повышенная проницаемость к газам и растворителям также возникает в результате повреждения поверхности изделия.

· Запах обусловлен выделением продуктов метаболизма микроорганизмов - аминов, аммиака и сероводорода.

Типы антимикробных добавок

По предназначению антимикробные добавки можно разделить на 2 типа:

  • Биостабилизаторы – защищают пластики от обрастания грибками, водорослями, плесенью и т.п. и позволяют предотвратить разрушение пластиков микроорганизмами.
  • Биомодификаторы – придают пластикам способность поддерживать стерильность поверхности в течение длительного времени и предотвращают появление запаха.

Первыми биостабилизаторами были соединения мышьяка, серы, ртути или меди, например Бордоская жидкость. Это был основной биостабилизатор, используемый в США до 30х годов прошлого века. Затем, во время второй мировой войны были начаты исследования, приведшие к получению органических антимикробных соединений.

Органические системы представляют собой низкомолекулярные, легкомигрирующие соединения, иногда содержащие ион металла. Они не совместимы с полимером, поэтому мигрируют на поверхность изделия, и вступают во взаимодействие с микроорганизмами. Добавки постепенно вымываются с поверхности изделия, и защитный слой восстанавливается за счёт запаса в массе изделия.

Номенклатура применяемых добавок довольно широка, около 20 производителей выпускают порядка 80 наименований антимикробных добавок. Среди основных соединений можно назвать:

  • 10, 10 – оксибисфеноксиарсин (ОВРА).
  • Трихлоргидроксидифенилэфир (Triclosan)
  • n-октил-изотиазолинон (OIT)
  • 4,5-дихлор-2-n-октил-4-изотриазолин-3-он (DCOIT)
  • Меркаптопиридина оксид (Рyrithione)
  • Бутил-бензтиазолинон (Butyl-BIT)
  • N-фтордихлорметилтиофталимид (Sanitized PL)
  • Металлсодержащие биостабилизаторы - оловоорганические соединения и соединения серебра.
  • Полимеры, обладающие антимикробным действием (полифосфонаты, поли-N-галогенпиридин, поли (стирол-дивинилбензол) сульфамид).

В настоящий момент на рынке биостабилизаторов бесспорное лидерство за соединениями мышьяка, а точнее 10, 10 – оксибисфеноксиарсин (ОВРА). За этим соединением остаётся около 70% рынка, что обусловлено оптимальным соотношением цена/качество.

Тем не менее, в настоящее время появляется тенденция к использованию минимально токсичных соединений, и всё больше применяются антимикробные агенты, не содержащие мышьяка – например изотиазолины (более эффективны, чем ОВРА), трихлорметилфталамиды или неорганические соединения серебра и цинка (в основном цеолиты).

В качестве неорганических антимикробных систем в настоящий момент используются в основном соединения серебра и цинка. Такие соединения практически инертны, и начинают выделять ионы серебра (которые с древних времен известны как прекрасное антибактериальное средство) только при взаимодействии с влагой. Ионы серебра способны изменять метаболизм микроорганизмов, в основном взаимодействуя с энзимами. Основными преимуществами таких соединений является высокая термостабильность (до 5000С) и очень низкий уровень токсичности – допущены к использованию в косметических продуктах и прямому контакту с пищевыми продуктами.

Высокая термостабильность позволяет использовать такие материалы для изготовления изделий из конструкционных термопластов.

Основные требования к антимикробным добавкам

Общие требования к антимикробным добавкам, используемым в качестве как биостабилизаторов и биомодификаторов, одинаковы:

  • Низкая токсичность для людей, животных и окружающей среды как в процессе переработки, так и при использовании готовых изделий.
  • Лёгкость переработки и применения
  • Совместимость с другими добавками (стабилизаторы, процессинги и т.д.)
  • Отсутствие негативного влияния на физико-механические или потребительские свойства изделия
  • Длительные сроки хранения готовой продукции и высокая эффективность

Переработка антимикробных добавок

Хорошо известно, что стандартное экструзионное и литьевое оборудование не позволяет достичь однородного распределения добавок в матрице полимера, поэтому для изготовления изделий с антимикробными свойствами рекомендуется использовать суперконцентраты.

Получение антимикробных концентратов очень тонкий и деликатный процесс, требующий специального оборудования (двухшнековый экструдер с низкими напряжениями сдвига), тщательного контроля режимов переработки (температура, скорость), чтобы предотвратить разложение добавок и достичь однородного диспергирования добавки в матрице полимера.

Методы оценки действия антимикробных добавок

Следует отметить, что выбор метода исследования чувствительности пластиков к микроорганизмам и эффективности добавок чрезвычайно важен. Существуют методы, оценивающие стойкость материала к биоразложению, и сопротивляемость образованию колоний бактерий на поверхности изделий. Помимо ASTM, Американская Ассоциация Химии и Окрашивания Текстиля (AATCC) также разработала методики оценки антимикробной способности искусственных волокон и тканей. Также, существуют нормативные акты, разработанные AFNOR (Франция), DIN (Германия), IEC (международная электротехническая комиссия), SN (Швейцария). Методики эти в целом схожи, сущность их представляют следующие 5 методик:

  1. Agar Plate Test (тест с агаровой пластинкой) – подходит только для оценки микробиостатической активности. Преимуществом этого метода является быстрота, лёгкость проведения и высокая достоверность.
  2. Стойкость к грибкам по ASTM G21-90 – образец помещается в стерильный раствор, что позволяет определить, может ли материал служить питательной средой для грибков.
  3. In-Use Test (тест в реальных условиях) по ASTM D3083 – в соответствии с данной методикой пластик с антимикробной добавкой закапывается на 90 дней с целью определения подверженности биоразложению.
  4. EN ISO 846 – недавно разработанная в Европе методика, представляющая собой комбинацию первых трёх, что позволяет комплексно исследовать пластики, предназначенные для работы на открытом воздухе или в почве.
  5. Direct Contamination of the Test Specimen (введение микроорганизмов в образец) – не зависит от скорости миграции микроорганизмов, подходит для исследования образцов, содержащих нерастворимые или труднорастворимые (неорганические на основе серебра и цинка) антимикробные добавки.

Основные направления развития в области антимикробных добавок

В настоящий момент очевидна тенденция к использованию малотоксичных антимикробных добавок. Соединения на основе мышьяка (OBPA) и тяжёлых металлов всё больше замещаются производными изотиазолинов, которые показывают большую, по сравнению с ОВРА, эффективность или соединениями, содержащими серебро и цинк, даже несмотря на низкую стойкость к окислению и изменению цвета под действием кислорода воздуха.

Также наблюдается возрастание спроса на биомодифицирующие добавки, позволяющие предотвратить появление запаха, и способные воздействовать на широкий спектр микроорганизмов.

Другое перспективное направление это использование полимерных нерастворимые антимикробных соединений. Они гораздо медленнее вымываются из изделия и могут быть регенерированы (например при обработке хлорсодержащими соединениями во время химической чистки одежды).

Для изготовления пластиковых изделий, предназначенных к прямому контакту с пищевыми продуктами разрабатываются натуральные антимикробные добавки (например энзимы пероксидазы). В большинстве случаев эти натуральные антимикробные агенты комбинируют с добавками, повышающими совместимость с полимером и регулирующими их миграцию.

Бактерицидные добавки

VIBATAN Antimicrobic GP 00832 Суперконцентрат фунгицидов и бактерицидных присадок на основе OBPA, разработанный для полиолефинов и ПВХ. Препятствует образованию неэстетичных и дурно пахнущих отложений на пленках для систем хранения воды, мусорных ящиков, бакенов и т.д.

автор: Максим Гликштерн

reklama

Реклама